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Abstract 
By transforming the Takagi equations into a representa- 
tion using angular coordinates, it is in principle possible 
to obtain analytical expressions for the coefficients in a 
series expansion for the primary extinction factor in 
perfect crystals with a circular diffraction plane. In 
practice, it has been possible to obtain the first five terms 
in the expansion. This involves establishing recurrence 
relations for the families of Bragg and Laue boundary- 
value Green functions combined with integrations over 
the entrance and exit surfaces. The calculations, which 
cover the whole range of values for the scattering angle, 
Ooh, are performed using the mathematical software 
systems Mathematica and Maple. 

1. Introduction 
The attenuation of the diffracted intensity due to coherent 
multiple scattering within a crystal is denoted primary 
extinction (Darwin, 1914), whereas the intensity reduc- 
tion caused by incoherent multiple scattering is known as 
secondary extinction (Darwin, 1922). One of the main 
difficulties when modelling extinction is to properly deal 
with a crystal of finite shape. The present work addresses 
just this point, emphasizing the mathematical treatment 
for a perfect crystal in the shape of a cylinder or a sphere. 

Analytical expressions for the primary extinction 
factor exist for the case of a semi-infirfite crystal plate. 
For Bragg geometry, the solution was found by Darwin 
(1922) and, following the development of the dynamical 
theory (Ewald, 1917; yon Lane, 1932), Zachariasen 
derived the corresponding expression for Laue transmis- 
sion (Zachariasen, 1945). Over the years, several authors 
have dealt with the problem of multiple scattering in 
spheres. Early works include Ekstein (1951), Weiss 
(1952) and Zachariasen (1963). A major development 
based on the Hamilton-Zachariasen (H-Z)  intensity 
coupling equations (Hamilton, 1957; Zachariasen, 
1967), hence mainly dealing with secondary extinction, 
is due to Becker & Coppens (1974a,b). 

In the present work, we use the Takagi-Taupin (T-T) 
equations (Takagi, 1962, 1969; Taupin, 1964) to express 
the coupling of the amplitudes of the transmitted and 
diffracted plane wave fields in a perfect crystal. The 
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effect of the boundary on the propagation of the waves 
leads to a region structure bounded by families of 
characteristics (Sommerfeld, 1949) within the firfite 
crystal. For crystals with a convex outer shape, we will 
have both a Bragg and a Laue family of regions. This 
concept is important for obtaining all contributions to the 
diffracted wave field at a given exit point from the various 
parts of the crystal, and has been used by several authors: 
Werner and co-workers (Werner & Arrott, 1965; Werner 
et al., 1966; Werner, 1974) investigated secondary 
extinction based on the H-Z equations, whereas Uragami 
(1969, 1970, 1971) treated primary extinction in a 
parallelepipedal crystal using the T-T equations. 
Uragami applied Riemann's method for dealing with 
hyperbolic partial differential equations, and obtained 
closed expressions for the diffracted fields. A review of 
mathematical techniques in solving the H-Z and the T-T 
equations is given by Werner and co-workers (Werner et 
al., 1986). Olekhnovich & Olekhnovich pursued the 
ideas of Uragami and calculated numerical values for the 
primary extinction factor (Olekhnovich & Olekhnovich, 
1978). Saka, Katagawa & Kato (1972a,b, 1973) 
considered and classified multiple diffraction for various 
scattering geometries. Further important advances con- 
cerning extinction in general were due to Kato (1976a,b), 
who later initiated the development of the statistical 
dynamical theory (Kato, 1980a,b,c). Kato (1976a) also l 
derived a relation connecting the expressions for the 
integrated power in the case of an incident spherical wave 
(point source) and an incident plane wave. Becker and 
co-workers (Becker, 1977; Becker & Dunstetter, 1984) 
advocated the point-source concept and the series- 
expansion approach, devising a powerful theoretical 
foundation for treating primary extinction in finite 
crystals. In the present work, we closely follow the 
approach of Becker, with particular emphasis on a 
rigorous treatment of all region types. We will however 
not use integrations for an extended volume but explicitly 
perform the surface integrations of the intensity expres- 
sions for the field densities. 

A problem in dealing with spherical geometry is the 
description of the circular boundary contour. The method 
of Uragami seems to be workable for crystals bounded by 
plane surfaces only. The direct extension of this work to 
a cylinder by Olekhnovich & Olekhnovich (1980) thus 
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implies, in our opinion, an indirect use of a quasi-circular 
boundary geometry. Authors like Kawamura & Kato 
(1983) and A1 Haddad & Becker (1990) devised different 
schemes for approximating the circle by straight-line 
segments. In the present treatment, no approximations 
are made. The Takagi equations are expressed in angular 
variables, which make them suitable for dealing with 
boundary conditions along the circular contour. 

In the first part of this paper, we establish the concept 
of a genera l i zed  extinction f a c t o r  for a perfect crystal:l" 
the coupled effect on the kinematical power due to 
multiple scattering, absorption and anomalous disper- 
sion, c f  Becker (Becker & Coppens, 1974a; Becker, 
1983), H/irtwig (1987) and Batterman & Cole (1964). In 
the second part, we apply the general concepts to perfect 
cylindrical and spherical crystals. We here only consider 
the non-absorbing case. Absorption is treated separately 
in another paper (Thorkildsen & Larsen, 1998). 

All calculations are performed symbolically using the 
mathematical software packages Mathemat i ca  Version 
2.2.3 (Wolfram, 1991) and M a p l e  V Release 3 (Char et 
al., 1991 a,b). 

2. Generalized extinction factor 

2.1. The Takagi equat ions  in the two-beam case 

The electric displacement field within the crystal is 
written as an Ewald wave, D(r), built of two plane-wave 
components, Duo and Dkh, representing the transmitted 
and diffracted wave fields, respectively::[: 

D(r) = Dko + Dkh 

-- Do(r ) exp(-2:rik o • r) + Dh(r ) exp(- -2nt l~  h • r). 

(1) 

Combining Maxwell's equations for a dielectric medium 
(Jackson, 1975), using von Lane's approximation (von 
Laue, 1932) for the electric field: 

E ~ (1/Eo)(1 - Xe)D 

with a Fourier expansion of the electric susceptibility, 
Xe(r ) ,  which is a periodic function in the Bravais lattice: 

Xe(r )  = Y~ Xp exp(-2zrip- r), 
p 

one obtains the Takagi equations (Takagi, 1962, 1969; 
Taupin, 1964), a set of partial differential equations for 
the amplitudes of the wave components in a perfect 
crystal. They are here written for one state of polarization 
(~r or ~): 

ODo/OS o -- iKohD h (2) 

ODh/Os h : 2rciflhD h + ixhoD o. (3) 

I" Here expressed as a series expansion. 
:~ The time-dependent factor exp(2~rivt) is omitted in the equations. 

The equations are valid to first order in Xo, the mean 
electrical susceptibility, which for X-rays has a value of 
the order of 10 -5 . In the derivation, it is assumed that the 
magnitude of the spatial derivatives of Dp, p 6 {o, h}, is 
of the same order as Xo. So and s h are spatial coordinates 
along the incident and the diffracted wave vector, K o and 
K h = K  o + h ,  respectively. The corresponding unit 
vectors are denoted s o and s h. They define the diffraction 
plane, h is a reciprocal-lattice vector. In this work, we 
will use Kp to represent wave vectors in vacuum and kp 
to represent wave vectors within the crystal. 

The deviation parameter, fib, is defined by (Authier & 
Simon, 1968; Authier, 1996b) ( c f  Fig. 1) 

/3 h de~ ilkh I I -  k 

and the coupling parameter, Kpq, by 

Kpq = - T r g f  Xp_ q = ( r e ) ~ f  / W c ) F p _  q. (4) 

r e is the classical electron radius, ~ is the wavelength of 
the incident radiation, C is the actual polarization factor, 
V c is the volume of the unit cell and Fp _ is the structure 
factor associated with the reciprocal-lattice point p - q. 

The first term on the right-hand side of (3) may be 
eliminated by the transformation 

Dp - -  Op exp(27ri f lhSh)  (5 )  

Th' 

"~"""............. 

Fig. 1. Illustration of  the 'dispersion' surface in a two-beam Takagi case• 
LaP = -KAOoh, LaA' = -KXo/2Yo,  A'C' = - ½KXo(1 - Yh/Yo) and 
AC = I lkh l l -k  = ~h. AQ = ~h = I IKhl l -K.  La denotes the Laue 
point and L o the Lorentz point. PA is the Anpassung. fi is a unit 
vector normal to the crystal surface. Yo = fi " So and Fh = fi • sh. I"o 
and T~ are parts of  the circles drawn from the respective reciprocal- 
lattice points o and h with radius K = 1/~., which is the vacuum 
wave number. T O and T h are drawn with radius k = K(1 + ½Xo), the 
wave number within the crystal. 
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and we arrive at 

Obo/oS o --- il¢ohD h (6) 

ODh/Os h = ixhoD o. (7) 

These coupled equations are the starting point for 
obtaining the generalized extinction factor in a perfect 
crystal. They can be combined to give two second-order 
hyperbolic partial differential equations. The equation for 
the amplitude of the diffracted wave is for instance given 
by 

02Dh/OSoOSh At- KhoKohD h = O. 

2.2. Boundary conditions 

The wave field inside the crystal is induced by an 
incoming plane wave with wave vector K o. The 
Anpassung, i.e. the change of this wave vector, as the 
beam enters the crystal will be along the inward normal 
vector to the. crystal surface (Pinsker, 1978; Authier, 
1996a). This kinematical boundary condition is most 
easily depicted using the dispersion-surface concept of 
standard dynamical theory, c f  Fig. 1. It follows that 
/~o ~ 0. 

Owing to the small value of  Xo, the exact boundary 
conditions for the fields, continuity of D± and Ell across 
the entrance surface (Jackson, 1975) are replaced by the 
condition of continuity of  D. Thus, at the point S at the 
entrance surface, e f  Fig. 2, we have 

D(ob)(S)exp['Zzriko • r(S)] = D(oe)(S)exp[-2zriKo • r(S)]. 

For the transformed field, Do, we then gefff 

D(b)(s). = D(oe)(s) exp[--2rciahsh(S)] 

× exp{]riKxo[So(S) + sh(S)]}. (8) 

I" The superscript (b) is used to indicate a boundary point. 

$ 

S k ¢ ~ So 
Fig. 2. Reference coordinate systems. (So, sh) is used for the coordinates 

with respect to the global system with origin at O. (Ao, Ah) is used 
for the coordinates with respect to the local system with origin at S. 

c~ h is the excitation error: 

% = - K  AOoh sin 20oh. 

AOoh is the departure angle from Bragg's law. ~tXo and 
~Xo, the real and imaginary parts of  the mean electrical 
susceptibility, will determine the refraction and absorp- 
tion of  the X-rays. To keep track of the changes in the 
wave vectors due to these effects, we explicitly express 
the diffracted wave at the point P within the crystal by 

Dkh (P) = Oh(P) e x p [ - 2 1 r i k  h • r(P)] 

= bh(P)exp[--2rciK h • r(P)] exp[2YHOthSh(P)] 

x exp{-rciKXo[so(P) + Sh(P)] }. (9) 

2.3. Method o f  solution 

Using the method of Riemann for solving hyperbolic 
partial differential equations (Sommerfeld, 1949; 
Sneddon, 1957; Authier & Simon, 1968; Takagi, 1969), 
the diffracted wave field at the point P is found by a path 
integral, c f  Fig. 3. 

B 

Dh(P) = (iKho/Sin2Ooh) f So. dS Gh(PIS)D(b)(s). (10) 
a 

dS is a curvilinear coordinate in the diffraction plane 
along the entrance contour, dS = fi dS, with fi being the 
inward unit normal vector to the contour at S. itChoG h is 
the boundary-value Green function, which is the solution 
of the Takagi equations for the diffracted field, subject to 
the boundary condition 

b~b)(s) = 3(s h -- sh(S) ). (11) 

The use of  a Dirac ~ function in the boundary condition 
leads to the concept of a point  source. In principle, one 
should include the factor 3(z - z(S)) and speak of  a field 
density, z is a coordinate perpendicular to the diffraction 
plane. An integration along z selects the diffraction plane 
associated with S. We may thus speak of an integration 

ove r  the entrance surface. In general, Gh(PIS)= 
Gh(A o, Ah) with A o = s o ( P ) - s o ( S )  and A h =  
sh(P ) --Sh(S ). Having an incoming plane wave with 

s 

P 

Fig. 3. Range of integration (A, B) associated with the interior point P. 
BPA represents the so called Borrmann triangle. 
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constant amplitude, D(o e), we finder for the diffracted 
wave at P: 

Dkh(P ) = (ilChoD(e)/sin2Ooh) f So" dSGh(A o, Ah) 
s(P) 

× exp(2zricghAh)exp[--TriKxo(Ao + Ah) ]. (12) 

We have used the notation S(P) to denote that part of the 
entrance surface where source points can contribute to 
the diffracted wave field at P. 

2.4. Generalized extinction factor for a perfect crystal 

The integrated diffracted power, T'h, in the case of an 
incoming plane wave is obtained by a two-step 
procedure: 

(i) Moving the general point P to a point M on the exit 
boundary. The power is obtained by integrating across 
the exit surface (Kato, 1976a; Becker, 1977): 

Ph = f dz f sh- dM IDkh 12. 
M 

The range of integration in z now spans the vertical 
dimension of the exit surface of the crystal. 

(ii) Integrating the power across e = A0oh, the 
glancing angle of the incident beam with respect to the 
scattering plane (Zachariasen, 1945; Kato, 1980d): 

o o  

Ph = f de Ph(e). 
--(X) 

The result is 

Ph= P~°)(1/vsin2Ooh)f dz f sh.dM f So-dS 
M S(M) 

X [ah(Ao, Ah)[ 2 exp[--/z(A o + Ah)], (13) 

where p~0) is the kinematical integrated power, v is the 
volume of the crystal and/z =-2zrK~Xo is the linear 
absorption coefficient. 

The generalized extinction factor, y, for a perfect 
crystal is defined by 

y = ph/p~ °). 

In the general case of a convex crystal, the effect of the 
boundary leads to a set of Green functions, each one 
related to a specific region of the crystal. The regions are 
obtained by a ray-tracing procedure, which draws the 
characteristics with origin at the source point S. This 
divides the crystal into the various parts, m. The division 
depends on the position of S on the entrance surface and 
the crystal and scattering geometry. In fact, there will be 
two families of Green functions:~ a Bragg family (r = B) 
when 7h < 0, cf. Fig. 9, and a Laue family (r = L) when 

"~ The carrier wave exp[--27riKh • r(P)] is omitted in (12). It will not 
influence the intensity of the diffracted beam at P. 

Corresponding to the Bragg-(Bragg) ~(+1) and Laue-(Bragg) z~(+l) 
classification of Saka et al. (1972a,b, 1973). 

Yh > O, cf  Fig. 11. Fh is defined in Fig. 1. We denote the 
families of boundary-value Green functions by 
{Gh(A o, Ahlm; r)}. The generalized extinction factor is 
then expressed by 

y = (1/v sin 20oh ) y~ ~ f dz f sh. dM f So. dS 
r m=m'(r) M(m) S(M) 

x [Gh(Ao, Ahlm; r)l 2 exp[--/z(A o + Ah) ]. (14) 

The sums cover both families and all the regions m' that 
have their boundaries along the exit surface. 

It has been shown in the literature (Becket, 1977) that 
the surface integrations can be transformed to a volume 
integration for an extended volume v': 

(1/sin20oh)~ ~ f dz f Sh" dM f So. dS 
r m=mr(r) M(m) S(M) 

= f d V = ¢ .  
V 

In this work, we will explicitly carry out the surface 
integrations. The actual result for the extended volume is 
used as a check for the integration setup. 

Performing the symbolic expansion 
cx~ 

[Gh(Ao, Ahlm; r)[ 2 = ~(-1)"lul"~")(Ao, Ah; ~lm; r) 
n = 0  

with the parameter u defined by 

U ~ KohKhofl. 2. 

(15) 

(16) 

= g(z) (a real number) is a characteristic length 
parameter of the scattering system. Taking anomalous 
scattering into account, u is a complex quantity: 

u = lul exp(i¢,) 

with 

(I) def 
= gOoh + gOho, 

lul = (t/Aoh) 2, 

gOpq is the phase of Kpq or equivalently the phase of the 
structure factor Fp_q. Aoh is an extinction length. 

Aoh ~ ItCohxho1-1/2. 

It then followsl cf  (14) and (15), that the generalized 
extinction factor, y, depends upon: 

(i) Crystal geometry/scattering condition - through 
UAoh, the actual region structure (m; r) and the surface 
integration setup (z, M(m'), S(M)). 

(ii) Normal absorption - through/z. 
(iii) Anomalous scattering - through ~. 
With IZ and • put to zero, we will denote the 

generalized extinction factor as the extinction factor for 
perfect crystals, symbolized by yp. 
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The main challenges to obtain analytical results for the w i t h  a subdivision into A and B parts. While the exit 
generalized extinction factor are: 

(i) Obtain the Green functions, Gh(A o, A h Im; r), either 
in closed form or as series expansions. 

(ii) Establish the algorithms for the integration setup, 
i.e. the connected limits {M(m'), S(M)} for the Bragg and 
Laue cases. 

These are two general points, which have to be 
addressed for any given crystal shape. 

3. Crystals with a diffraction plane in the shape of a 
circle 

3.1. Geometry  and  coordinates 

A point in the diffraction plane is represented by the 
spatial coordinates (Ao, Ah) measured with respect to a 
local coordinate system with origin at the source point S. 
As a global coordinate system, we here use (x, y) with - x  
along the reciprocal-lattice vector of the atomic scattering 
planes and the origin O at the centre of the circular 
diffraction plane. The positions of S and the exit point M 
are measured by the angles ~z s and 7t.v>between the x axis 
and the radius vectors OS and OM, respectively, c f  
Fig. 4. 

A convenient angular representation, (~0o, ~Oh) , of an 
interior point is found by drawing lines parallel to s o and 
Sh, in the opposite direction to the interceptions, N O and 
N h, with the circle contour, and measure the angles 
between the reference axes T o and zh and the radius 
vectors to the peripheral points. T o is perpendic~__~tr to s h 
and z h is pe__rp~ndicular to s o. Thus, ~o o = L(Zo, ONh) and 
q~h = / ( Z h ,  ONo).  This is illustrated in Fig. 5. 

The division into entrance and exit surfaces is shown 
in Fig. 6. It follows that the entrance surface is defined 
for 

~Ps ~ (Ooh, Ooh + re) (17) 

surface is given by 

7/M ~ (zr - Ooh, 2zr -- Ooh), (18) 

which is built by the A and D parts. Following the 
notation of Saka et aL (1972a), A - A  scattering, source 
point S and exit point M both positioned on A, will be 
denoted as Bragg-Bragg scattering, while the B - D  
situation will lead to Laue-Laue scattering. Similarly, the 
cases A - D  and B - A  are classified as Bragg-Laue and 
Laue-Bragg scattering, respectively. 

The relations between the spatial and angular co- 
ordinates are in general given by 

cos% = COS( Crs + Ooh) + ( A o Sin 2Ooh/R ) (19) 

cos qgh = cos0Ps - Ooh) -- (Ah sinZOoh/R). (20) 

S 
h 

f 

"¥" ,Co 

Sh $o 

Fig. 5. Definitions of angular coordinates q9 o and ~o h for an interior point. 

Sh 

S 

r s 

So 
Fig. 4. Source point S and exit point M. Angular representation given by 

Cs and g'M. 

y 

x 

So 

_ 

Sh So 

Fig. 6. Entrance (.4, B) and exit (A, D) surfaces on a circle with radius R. 
The scattering angle is 20oh. 
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For a point on the exit surface, cfi Fig. 7, we have 

~Oo(M ) = 2zt - (@u + Ooh) 

{2zr - 0 p m - 0 o h )  M o n D  

~Ph(m) = lPM -- 0oh m on A 

and consequently 

(21) 

(22) 

Ao(M ) + A , ( M )  = R[(sin ~Ps - sin ~PM)/cos 0o,1. (23) 

and the difffracted-beam direction s, becomes 

d M .  sh = - sin(qz u + Ooh)R dqz M. (25) 

The extended volume, v', is shown in Fig. 8. It is here 
represented as an extended area in the diffraction plane 
and has a magnitude o f  

v' = [(zr - 0o, ) + tan 0o,]R 2. (26) 

It follows that the scalar product between the surface 
element dS and the incident-beam direction s o is 

dS-So = sinOp s - Ooh)R d ~  s (24) 

while the scalar product between a surface element dM 
of  the exit surface, directed along the outward normal,  

3.2. The Takagi equat ions  in angular  coordinates  

By defining 

e = R / s i n  20oh, 

we can express the Takagi equations using the angular 
coordinates (~Po, ~Ph) as 

ODo/&p o = -iXohe sin ~Oob h (27) 

ob, l ~ =  iXhoeSin~Ohbo. (28) 

x 

M, 

The boundary condition used to calculate the family of  
Green functions1" is then given by 

b~ob)(s) = [1 / t  sin(Or s -- Ooh)18(~o h -- (d/s -- Ooh)). (29) 

It turns out that the generalized extinction factor can be 
expressed:[: by [cfi (14)] 

t The Green functions at the exit surface are now expressed by the 
angular variables ~/'s and ~/'M, cfi equations (19)-(22). 
:[: R ~ R(z), the radius of the diffraction plane, in the general case. 
R(z) = R for a cylinder. 

(a) 

Y 

"!7 h 

No 

: v '  V,, 

(b) 

Fig. 7. Angular coordinates ~0o(M ) and ~0h(M ) for an exit point M. (a) M 
on part A of the exit surface. (b) M on part D of the exit surface. 

~A 

Fig. 8. Extended volume v' for a crystal in the shape of a cylinder. 



1 

y = (1/Jr sin 20oh ) E ~_, f dzf(z) 
r m----m'(r) 0 

× f daPM [-- Sin(~ M + Ooh)] 
M(m) 

x f daPs sin(~ s -Ooh)lGh(~ s, grulm; r)l 2 
S(M) 

x exp[-/zR(z)(sin ~Ps - sin llrM)/COSOoh ]. (30) 

8h 

II 

f (z )  is a shape function, f (z )  = 1 in the case of a cylinder 
and f (z )  =3(1  - z  2) in the case of a sphere, z is now 
treated as a dimensionless coordinate. 

3.3. Region structure 

3.3.1. Source on entrance surface A - Bragg family. 
When the source point S is on the A part of the entrance 
surface, the crystal is divided into regions as shown in 
Fig. 9 (cf Uragami, 1971; Becker & Dunstetter, 1984). 
The number of regions that has to be taken into account 

will depend upon the value of the scattering angle 20oh. 

This point will be discussed later. The boundary points,'[" 
b ' J  q)o and ~ ,  associated with the interior point (~0 o, q)h), will 

be at the crystal surface, 5 ,  or at a border line, q~, 
between two regions. This has been visualized in Fig. 10 
for the two classes of regions m - - 2 p +  1 and 
m = 2p + 2, where p = 0, 1 . . . . .  

A careful geometrical analysis (Thorkildsen & Larsen, 
1997a) gives the following equations for these points: 

~oo~(p + 1 ) =  20oh- ~o~(p) 

g(o) = O s  - 

~o~(p) = 2 z r -  20oh -q~o(P) 

~Oo s = 2 ~ -  ~oh - 20oh 
= 2Oo  - 

p > 0  

p >_ 1 (31) 

~f The lower limits in the integration of the Takagi equations, cf. §3.4. 

S 

$h 

Fig. 9. Source point S on part A of the entrance surface. Division of the 
circular area into regions. Bragg case. Regions counted by Roman 
numbers. 

m=2p+l (~,~,) (~,.,o~(p)) 

surface ~ " - - . . . . . ~ /  border 

(~.,~0 

(~.B(P+I),$,) (~.,~) m=2p+2 

border ~ surface 

(~0,~ 
Fig. 10. Limits of integration for the integral operators - Bragg case. 
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Fig. 11. Source point S on part B of the entrance surface. Region 
structure - Laue case. 

(~.L (p) ,~h) (q).,~(P)) 
m=3p+l o..... 

border ~ . . . . . . . . . . . ~ ~  border 

(~,~h) (~o,¢0 (~.,~(p+])) 
m=3p+2 o...._ 

border 

(~.~(p+l) ,~0 (%,0 (,0,~) 
m= 3p+ 3 o.... 1o 

border " ~ " ~ - - . . ~ ~  sarface 

(,.,,0 
Fig. 12. Limits of integration for the integral operators - Laue case. 
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3.3.2. Source on entrance surface B - Laue family. 
When the source point S is on the B part of the entrance 
surface, the crystal is divided into regions as shown in 
Fig. 11. The boundary points for the three classes of 
regions, m = 3 p + l ,  m - - 3 p + 2  and m = 3 p + 3 ,  
p - - 0 ,  1 . . . .  , are schematically shown in Fig. 12. The 
equations for the border points become 

#o(O) = % + 

q~o(P + 1) = 20oh - ~o~h(p ) 
(32) 

= % - 

q~h(P + l) = 2 z r -  20oh -- q~o(P). 

3.4. Series expansions f o r  the fami ly  o f  Green funct ions  

We will seek the boundary-value Green functions 
using the series expansions 

bo(~Oo, (Ph) -- [1/e sin(Tt s --Ooh)]G(o°)(~Oo, qoh) 
OO 

+ ( l / e )  ~_~(-u)'G(o')(~Oo, ~oh) (33) 
n=l 

Dh(~O o, ~o~) = iXhoGh(~o o, rph ) 
O 0  

= #Cho ~.(-u)"G~"~(qOo, ~oh). (34) 
n=0 

The expansion parameter u is defined in (16). Since we 
neglect effects due to anomalous scattering, u is a real 
quantity. 

From the Takagi equations (27) and (28), we obtain 

• (~-~) 
OG(')(qgo, ~Oh)/O~o o ---- -- sin qgoG h (qgo, qgh) , 

0G~")(CPo, ¢Ph)/O~Oh = sincPhG(o'O(cpo, ¢Ph), 

n > l  

(35) 

n>__l, 

(36) 
together with 

 0h)/0 0h = [Sin  h/sin(%  0h), 

n ~ 0 .  

This last equation gives rise to general boundary 
conditions for those sections of  the crystal where first- 
order scattering is present• 

G(o°)(~°o, ~°h) = 3(~Ph - OPs - Ooh)) (37) 

 0h) = O( 0h --  ( %  -- 0oh))- ( 38 )  

® denotes the Heaviside function. We then obtain the 
folJo~ing .integral recurrence relations and boundary 
conditions, from which it becomes possible to calculate 
the series-expansion coefficients: 

¢o 
G(o")(~Oo, qohlm; r) -- G o(')(rpo(~oh),b ~oh [mb; r) -- f d~o' o 

¢o(~oh) 
1̂ r-,(n-1)t ^/ × sinwo~h ~Wo, ~0hlm; r) (39) 

~0h 

G~')(q9o, ~ohlm; r) = G~n)(~Oo, ~ob(qoo)[mb; r) q- f d~d h 

i (n) . I X Sinq~hG~, (~0o, ~ohlm; r) (40) 

G(o°)(~0o, fphlm; r) = 0 in general 

G~°)(q9o, ~oblmb; r) = 0 at the B and C surfaces 

G~°)(~Oo, q0hll; B) = 1 

G~°)(~Oo, qgh[m; [3) = 0 m > 2 

G~°)(%, ~Oh[1; L) = 1 

G~°)(V o, ~oh12; I_) = 1 

G~°)(~Oo, ~Ohlm; L) = 0 m > 3. 

m b represents a neighbouring region or the crystal 
boundary. 

3.5. Integration setup 

A nomenclature for the various scattering processes is 
given in Fig. 13. To determine the coupled ranges of  
variations for ~s and ~M, we have to examine the sets of 
inequalities given in Tables 1 and 2 combined with the 
constraints given in Table 3. Separate analyses must be 
performed for the classes of  regions m = 2p + 1 and 
m = 2p + 2 in the Bragg scattering situation and for the 
classes m = 3p + 1, m = 3p + 2 and m = 3p + 3 in the 
Laue case. 

Contributions to the diffracted field at the exit surface 
A are shown in Fig. 14. The limiting values of Ooh 

~ + 0o~ 

% 

rc - Ooh 

0oh 

A-A 

Bragg-Bragg 

IhBBm 

A - D  

Bragg-Laue 

IhBLm 

B-A 

Laue-Bragg 

IhLBm 

B-D 

Laue-Laue 

IhLLm 

n-O°h n + O°h ~M 2Zt- 0°h 

Fig. 13. The scattering processes related to entrance and exit surfaces 
shown in a 0PM, ~PS) plot. The variables IhLLm, IhBBm, IhLBm and 
IhBLm are used for the intensity of  the diffracted fields in region m. 
I.e. [Gh(ap s,  g'mlm; {l, B})I z for the various combinations of  entrance 
and exit surfaces: Laue-Laue, Bragg-Bragg etc. 
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0~[1] 

0o,[2] 

0~[3] 

O~ [4] 

0~[51 

0~[6] 

O~ [7] 

0~[8] 
0~[9] 

O.h [10] 

Gh[2p+  1 ;B] Gh[3p+2;L]  

I , 

]il, 

I 
i : 

| I 
t 
¢ 

i 

i 

ii i 
i ! i i 

! 
: i 

s = l  

p = O  1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 

10 

Fig. 14. Contributions to the diffracted field 
at the exit surface A. s counts sections in 
0oh. G h [ 2 p + l ; B ]  = Gh(~s,~Mlm = 
2p + 1; B), Gh[3p + 2; L] = 
ah(~S, ~Mlm = 3 p + 2 ;  I_). The solid, 
dashed and dotted lines represent different 
integration setups. The illustration indi- 
cates the buildup of regions for increasing 
S .  

0o,[1] 

0o,[2] 

0o,[31 

0o,[4] 

0o~[5] 

GhtZp+liBl G'h['2-p+2 ;B l Ght3p+l;Ll Gh[3p+2;Ll  Gh[3p+3;L] 

0",[11 

i : 

! ! : i ~ I I 

I 

0;,[21 

0;,[31 

0'o,[4] 

I o'oh[51 

:1 

p=O 1 2 0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 0 12 3 4 5 

Fig. 15. Contributions to the diffracted field 
at the exit surface D. Nomenclature as in 
Fig. 14. 
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Table 1. Restrictions on the exit point, (%(M) ,  ~Ph(M)), 
associated with a region m in Bragg scattering 

Region Inequalities 

m = 2 p +  1 ~o (P+  1) < ~0o(M ) _< ~o 
~(p) _< ~oh(i) < ~(p + l) 

m = 2 p + 2  q~o(p + 2) < ~oo(M) _< ~o(p + 1 ) 
_< ~o,(M) _< ~(p + 1) 

Table 2. Restrictions on the exit point, (%(M), ~oh(M)), 
associated with a region m in Laue scattering 

Region 

m = 3 p + l  

m = 3 p + 2  

m = 3 p + 3  

Inequalities 

~ ( p  + l) _< ~oo(M ) < ~o(P) 
~(p) _< ~h(M) _< ~(p + 1) 

~o(P + 1) < ~0o(M ) < 
~(p + 1) _< ~oh(M) _< ~(p + Z) 
~o(p + 2) _ ~oo(M) _< #o(P+ l) 

___ ~oh(M) _< ~¢p + l) 

Table 3. Summary  o f  the relations f o r  the various 
scattering processes, c f  equations (21) and (22) and 

Fig. 6 

Scattering aPs ~PM 

A-A (zr - Ooh, Jr + Ooh) (~r - Ooh, Jr + Ooh) 
A - D  (Jr - Ooh, zr + Ooh ) (P: + Ooh, 2n  -- Ooh ) 
B-A (Ooh, ~r - Ooh) (~ - Ooh, 7r + Ooh) 
B - D  (Ooh, 7r - Ooh ) Qr + Ooh, 2zr - Ooh ) 

paper (Thorkildsen & Larsen, 1998). Using (30) together 
with the series expansion for G h, (34), it turns out that the 
primary extinction factor can be expressed by 

tl t 

yp = Y~(--1)tif(s)(Ooh)(R/Aoh sin2Ooh) 2". (41) 
ti ~ O  

The coefficients f,(s)(Ooh ) explicitly depend on the 
scattering angle Ooh with a separate expression for each 
section s. n' denotes a practical upper limit in the 
expansion. 

n+~  

~-0oh 

between the different sections are given by the relation 0oh 
7r - Ooh 

Ooh = Ooh(S ) = [s/(s + 1)](n'/2). 

Contributions at the exit surface D are shown in Fig. 15. 
The values of the intermediate limits within the sections 
are n+0oh 

O'oh = O'oh(S ) = [(2S -- 1)/(2S + 1)]Qr/2). 

The region structure and the limits for the surface 
integrations are most conveniently shown in a (Tt M, 7ts) 
plot. Two cases within the first section, 0 _< 0oh _< zr/4, 
are shown in Figs. 16 and 17: O'oh(S ) is the value of 0oh 
when the parallelogram associated with the ]hLLm field, =-Ooh 
m = 3s + 1, changes orientation.~ We have found that 
the integrated power calculated for the Ooh range Us 
Ooh ~ (Ooh(s), O'oh(S)) is valid for the entire section, i.e. 
Ooh ~ (Ooh(S), Ooh(S + 1)). 

An extensive treatment of the structure of integrations 
is given by Thorkildsen & Larsen (1997a,b). 

3.6. Primary extinction - cylinders and spheres 

In this work, we consider a non-absorbing crystal. A 
new algorithm for calculating absorption and weighted 
path lengths in cylindrical and spherical crystals, based 
on surface integrations, will be treated in a following 

I" s = 0 in Figs. 16 and 17. 

n+0oh 2n-¢h 

Fig. 16. 0PM, ~S) plot, 0oh = 20 ° < O'oh(O ) = 30 °. 

I I  L 

:: I L 

,~-0o~ ,~+oo~ I ~,~ t 2~-0o~ 

2n-30oh n+3Ooh 

Fig. 17. (~M, ~/rs) plot, Ooh ---- 40 ° > O'oh(O ) = 30 °. 
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The transition from a cylinder to a sphere influences 
the integration across the vertical dimension of the exit 
surface only. In (41), 

R 2n ~ R2"(z) --+ R2"(1 _ zZ)" 

and with the shape function, f ( z ) ,  taken into account, the 
integration gives 

1 
3 ~f dz(1 - z 2 )  n + a  = (2). /(5/2). ,  

0 

where () .  is the Pochhammer symbol (Abramowitz & 
Stegun, 1965). Thus, (41) applies in both cases with 

J~(n s)(sphere) = (2 )n / (5 /2 )n f  (s)(eylinder). (42) 

The actual region structures do not depend on R(z) but 
only on the scattering angle Ooh. 

4. Resul ts  

PRJMARY EXTINCTION IN CYLINDERS AND SPHERES 

The A1 Haddad & Becker approximation is seen to be 
very good at small Ooh, but there is a tendency of 
overestimating the yp values at high Bragg angles. This 
reflects the fact that their approximation does not 
properly cover all the scattering contributions arising as 
Ooh increases. However, the differences are rather small 
and their method allows a much greater span in x, which 
cannot be verified from the present calculations owing to 
the slow convergence of the series representing yp. Some 
numerical results of the calculations for a sphere are 
shown in Table 4. 

By comparing corresponding terms in the series 
expansion in the limit 0oh ~ 0 with that for a semi- 
infinite crystal plate, we find for a sphere: 

yp(Ooh -+ O) 

= ~ (3 x 4") (2n + 1)(2n + 3) ~ x 2" 
n = 0  k=2 

--- 1F2[1;  1 , 5 ;  _ 4 x 2 ] ;  ( 4 3 )  

4.1. Primary extinction in a sphere 

It has been possible by the method described here to 
obtain analytical expressions for the series-expansion 1 
coefficients of the primary extinction factor up to fifth 
order. Owing to the complexity of the terms, we here 0.95 
only present the first-order terms for a sphere. The 
second-order terms are given in Appendix A. Mathema- 0.9 
tica code for the terms up to fifth order is available from 
the authors on request. 0.85 

For 0 < Ooh < zr/4: 0.8 

0.75 yp = 1 - [(8 Sin2Ooh)/5Zr](1 -t- ZrOoh -- 4~h -- COS 40oh 

-- Ooh Sin 40oh)(R/ Aoh sin 20oh) 2 + . . . .  

For zr/4 < 0oh < zr/2: 

yp = 1 - [(4 sinZOoh)/5zr](2 -- ~ + 6ZrOoh -- 8~h 

-- 2 COS 40oh + rc sin 40oh -- 20oh sin 40oh ) 

× (R/Aoh Sin2Ooh) 2 + . . . .  

According to the literature (Wilkins, 1981; A1 Haddad & 
Becker, 1990), a correct solution for the primary 
extinction factor should be symmetrical with respect to 
a reversal of the scattering geometry: yp(Ooh ) = yp(--Ooh ). 
By inspecting the above expressions, we find this to be 
true, bearing in mind that the reversal causes zr --+ -zr. 

Fig. 18 shows the angular dependence of y/, at various 
def r~ , , 

values of x = ~ / ~ o h  based on the expansion to fifth 
order. The dots indicate the approximate numerical 
calculation by A1 Haddad & Becker (1990). We note 
that the extinction factor declines as a function of the 
Bragg angle up to a certain level, and then rises again. 
The minimum point seems to be shifted towards lower 
Ooh values as x increases. The curves are asymmetrical 
and yp(Ooh = 0 °) < yp(Ooh =90°) .  

YP x=0.1 

x=0.2 
= • ? • 

x=0.3 

x=0.4 

x=0.5 

x=0.6 

0 20 40 60 80 0oh 

Fig. 18. Angular dependence o f  the primary extinction factor in a 
sphere. Marks indicate the approximative numerical calculations by 
A1 Haddad & Becker. x = R/Aoh. With five terms only in the series 
expansion for yp, a rather limited range in x is covered. 

0.8 

0.6 

0.4 

0.2 

y 

,,..., 

\- 
i \  

0 2 4 6 8 10 

Fig. 19. Primary extinction factor curves at 0oh = 0 as a function o fx .  
Solid line: sphere; dotted line: cylinder; dashed line: slab. 
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Table 4. Primary extinction factor for a spherical crystal 

The absolute error in the calculated quantifies is less than 2 × 10 -4. 

x 0oh = 0 ° 

0.0 1 
0.1 0.9920 
0.2 0.9685 
0.3 0.9307 
0.4 0.8804 
0.5 0.8202 
0.6 0.7527 
0.7 0.6811 
0.8 0.6084 
0.9 0.5373 

10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 ° 

1 1 1 1 1 1 1 1 1 
0.9919 0.9914 0.9908 0.9900 0.9900 0.9907 0.9914 0.9919 0.9921 
0.9679 0.9661 0.9633 0.9609 0.9612 0.9640 0.9669 0.9688 0.9694 
0.9294 0.9254 0.9198 0.9151 0.9165 0.9230 0.9292 0.9333 0.9347 
0.8782 0.8718 0.8629 0.8562 0.8602 0.8719 0.8825 0.8892 0.8915 
0.8170 0.8081 0.7962 0.7887 0.7975 0.8156 0.8306 
0.7487 0.7376 0.7237 0.7175 0.7332 
0.6764 0.6638 0.6495 0.6470 
0.6033 0.5901 0.5772 
0.5322 

and similarly for a cylinder: 

yp(Ooh ----> 0 ) =  1F2[1 ; 1,2;-4x2] .  (44) 

pFq[a; b, c; z] is a generalized hypergeometric function 
(Abramowitz & Stegun, 1965). In Fig. 19, we have 
shown the results for the primary extinction factor in this 
limit for a sphere, a cylinder and a semi-infinite crystal 
slab (Zachariasen, 1945, 1967) with thickness 2R. We 
observe that the Pendellrsung oscillations are most 
prominent for the slab, whereas they are barely visible 
in the spherical case. It is also to be noted that 
y(psphere) > y(cylinder) > yp(slab) for every x. This is expected, 
taking into consideration the different distributions of 
path lengths within the various crystal geometries. 

4.2. Expansion coefficientg- asymptotic behaviour 

The coefficientsf,(s)(Ooh) are depicted in Fig. 20. They 
are continuous across the different borders in s. We find 
that the maxima of the curves decrease and shift towards 
higher 0oh values as n increases. The lowest orders in the 
series expansions are n - - m / 2  within the Bragg family 
and n = (m + 3)/6 within the Laue family (integer 
division). Then, by examining Figs. 9 and 11 and 
relating their structures to that of  a (~M, ~s) plot, it 
becomes apparent that there will be an asymptotic limit 
forf ,  (s), i.e. an upper value for s, Smax(n), beyond which 
no new contributions to the integrated power are 
generated to the order n. This should occur for 

Smax = n + 2, n odd 

Smax -- n + 3, n even. 

In practice, we always find the asymptotic limit for 
s -  Sma ~ - 1 .  Fig. 21 shows the contributions to t h e  
coefficient fl for the different scattering processes. 

We note the following features: 
(i) The curves are all asymmetrical but continuous. 
(ii) The derivative of the lhl.L2 curve is not continuous 

at Ooh = 45 °. This is in accordance with Werner et aL 
(1966) who pointed out that the diffracted fields, but not 
their derivatives, had to be continuous at the region 
borders. 

(iii) The mixed contributions (IhLB2 and IhBL1) are 
(A D) (/7 A) equal. It seems that P~ - = Ph - represents a general  

symmetry property of the power contributions for this 
crystal geometry. It is found that the contributions are 
equal about the diagonal line ~ P s - - - ~ M  + 2n" in the 
(~M, ~Ps) plot, i .e.  IhBL[m -- 2p + 1] = 
IhLB[m = 6p + 2] and IhBL[m = 2p + 2] = 
IhLB[m -- 6p + 5]. 

f, 

1 

0.8 f l  

0.6 f~ 

0.4 

0.2 

0 20 40 60 80 '0oh 

Fig. 20. First- to fifth-order expansion coefficients for the primary 
extinction factor in a sphere. 

f l  

IhLL2 
0.5 

0.4 ! ~ N ~  hBBI 

0.3 
2B2, 

, .0,1 / ~_..,,,__ ,~,.. 
20 40 60 80 0o h 

Fig. 21. Contributions from the various scattering modes at the exit 
surface to the coefficientfl of a spherical crystal. 



184 PRIMARY EXTINCTION IN CYLINDERS AND SPHERES 

5. C o n c l u s i o n s  

The calculations of the coefficients for the primary 
exthaction factor are very time and memory consuming. 
They were performed on a PC equipped with a 90 MHz 
Pentium processor and 64 Mbyte of RAM. The fifth- 
order term represents the upper limit accessible with 
respect to both the hardware and the software. 

The use of numerical methods would be a way to 
extend the range of (0oh, x) for which values for the 
primary extinction factor could be calculated. However, 
based on the results presented in Fig. 18, this will give 
little new compared with the approximative treatment of 
A1 Haddad & Becker (1990). 

It will perhaps be more interesting, from a theoretical 
point of view, to adopt the method of solving Takagi's 
equations presented by Werner et al. (1966) to the 
angular representation of these equations, (27) and (28). 

A P P E N D I X  A 
E x p a n s i o n  coeff ic ients  f~s), s = 1-3 

We here present the second-order expansion coefficients 
for the primary extinction factor. The asymptotic level is 
reached for s = 3. 

s =  1 o r 0 < 0 o h < T r / 4 :  

~1) = (sin 20oh/105n.)(512 _ 212 cos 20oh 

- 216n'0oh cos 20oh + 864~h cos 20oh 

- 512 cos 40oh + 217 cos 60oh -- 5 COS 100oh 

+ 108n'Sin20oh -- 12480oh Sin20oh 

+ 1380oh sin 60oh -- 60oh Sin lO0oh ). (45) 

s = 2 or zr/4 _< Ooh <_ rr/3: 

f(2 z) = (sin2Ooh/lO5zr)(512 + 337 cos 2Ooh 

- 324n "z cos 20oh -b 23047rOoh COS 20oh 

-- 4032~h COS 20oh -- 512 COS 40oh -- 432 COS 60oh 

+ 216n ~ COS 60oh -- 1512ZrOoh cos 60oh 

+ 2592~h cos 60oh -b 72 COS lO0oh q- 22 COS 14001, 

+ COS 180oh -- 744zr sin 20oh -b 216zr 3 sin 20oh 

--1- 22500oh Sin 20oh -- 2304n~0oh sin 20oh 

-Jr 8064:rr0~o h Sin 20oh -- 9216003 h Sin 20oh 

+ 489zr sin 60ot, -- 17280oh Sin 60oh -- 39zr sin lO0oh 

+ 1440oh Sin 100oh -- 12zr Sin 140oh 

-b 420oh sin 140oh ). (46) 

S = 3 or zr/6 < 0oh < 3zr/8. The result is valid for the  
entire range zr/6 < 0oh < zr/2. 

fz (3) = (sin20oh/105zr)(-95 cos 20oh -k 180~ COS 20oh 

-- 936zr0oh cos 20oh -[- 1152~h COS 20oh 

-q- 81COS6Ooh -k 9COS l O0oh q- 5COS 140oh 

+ 108Zr sin 20oh -- 72zr 3 sin 20oh -- 3420oh Sin 20oh 

-b 5767r20oh sin 20oh -- 14407r0~o h sin 20oh 

+ 11520o3h Sin2Ooh -- 123zr sin 60oh 

-b 2160oh Sin 6Ooh -- 18zr sin l O0oh q- 360oh Sin l O0oh 

- 3rr sin 140oh -1- 60oh Sin 140oh ). (47)" 

Parts of this work have been presented at the 
Intemational School of Crystallography, 23rd Course. 
X-ray and Neutron Dynamical Diffraction: Theory and 
Applications, Erice, Italy, 1996. 
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